The '8 Commandments'’
For Choosing a Unit Testing Solution

Companies who perform unit testing on a regular basis are perceived
to be more reliable, professional and advanced. But what do you
need to consider before choosing a unit testing solution? Typemock,
the pioneers of easy unit testing solutions, have developed the
'8 commandments’ below as a guide for ensuring you select a unit
testing solution that is right for your development.

Thou shalt not waste time
on the learning curve

When choosing a unit testing solution,
you will want one that will require minimal
time for implementation. It may be
worthwhile to time a new developer within
your team with the framework to get an
accurate idea of how long it takes to get
started. For example - how long will it
take them to write the first three tests
for some class in your system? Is the API
clear and simple? Is there a single point
of entry in the API? Is there clear guidance
on what to do at each step of the way?
How often, if at all, do you need to check
the docs and tutorials? How easy is it to
look for the next step when you're not
sure what to do? Some tools offer
guidance within the IDE, while some
provide extensive help. Some don't do

either.

Thou shalt not waste
time fixing your tests.

How resistant to change do you need your
tests to be? Different frameworks provide
varying levels of change resistance (when
production code changes). Change
resistance can be measured according to
the number of tests needed to modify for
a single piece (method) of changed
production code. Does the tool support
these production changes without
affecting the tests? Do the frameworks
support recursive fakes? Is it non-strict
by default or does it throw exceptions on
unexpected interactions by default? How
does it handle method overloads (if your
production code changes to call a different
overload?). How are arguments verified?
Are all arguments ignored? Are actual
values used for expectations? All these
things affect the fragility of your test.
The more fragile it is, the less change
resistant it is. If your production code
changes a lot you will need to take this

into account.



™ Thou shalt design your
code the way you need it

Your project might be a greenfield project
(fresh new code) or have a lot of legacy
code. Not all isolation frameworks were
designed, or have the same support for
all (or any) legacy code scenarios. If your
unit tests need to be written against
legacy code (existing code without tests):
See if your production code contains static
constructors, internal or private classes
that might need to be faked. Does the
framework support faking them? Does
your code instantiate objects directly all
over the place, or does it use a
dependency injection framework or factory
of some kind that would need to be faked?
Make sure the framework you choose
supports these scenarios, or that you
have the time needed to refactor your

code for testing such cases.

Thou shall make your test
code readable

How will your tests look when you use
the framework? Test code is still code
and needs to be readable. When you jump
into it to debug, you need to be able to
see at a glance what you're testing.

Are your tests messy? Does the
framework cause your tests to be longer
than a page? Can you understand the
expected behavior of the code under test
if the framework is involved? Can your

team members understand without a

great deal of explanation what you are
using the framework for in each test?
Can you still write test code according to
accepted industry best practices such as
AAA (arrange-act-assert) when using this
framework? Not all frameworks support
the easier-to-understand AAA tests, for
example. It is important that the solution
you choose guides you in writing tests,
(incorporating the best-practices in test
writing), which will make the process of

unit testing quicker and easier.

Thou shall not need to
replace tools for the sake
of the tool

How well would the tool integrate with
your current coding environment and
ecosystem? Can you use the framework
from your various test runners
(TestDriven.NET, Resharper, MS Test etc.)
or in combination with profiling and code
coverage tools? Some frameworks
incorporate profiling, and it is important
to see that they work effectively with
other profilers and runners. Can you run
your tests with code coverage or with
other profiling technologies? How well
does the framework integrate with various
versions of Visual Studio? Do you need
it to support VS 20057 VS 2008? What
.NET versions should it support? Some

of the frameworks require .NET 3.5 and

up.



Thou shall not forsake

interaction testing
Do you need the ability to verify
interactions between objects in your tests?
Some frameworks may not have the built
in ability to verify interactions, requiring
you to provide your own manual flagging
mechanisms (hand rolled mocks).
For complicated interfaces this can grow
cumbersome and result in an
un-maintainable piece of code. Can you
verify method calls between the code
under test and its 3rd party dependencies?
For example, that a SharePoint method
gets called at the end of a test.

Thou shall not settle for

an incomplete solution
A complete solution is not only one that
meets all your requirements for the tasks
it needs to carry out, but one that
provides you with support from the
moment you show an interest in seeing
a demo until long after the product has
been implemented in your system.
Ask yourself, what kind of technical
support do you require? How fast do you
need to get a response to a question if
you.are not sure how to accomplish a
specific task with the tool? How many
people are on staff at the vendor who
makes the framework and at what hours
of the day? Is support provided by a

company or an independent individual?
A company is often more invested in
supporting you than an individual - or
they stand to lose money. What is the

company's main expertise? Are unit

testing and agility at its core business?
If so, the support team is more likely to
well versed be on these subjects. There
is nothing more frustrating for a
development project manager who is
trying to complete a project on time and
in budget then being delayed because the
team cannot get the support or answers
they need from the solutions experts in
real time.

Thou shall consider the
solution’s TCO

Often, one of the biggest factors in any
development project is the Total Cost of
Ownership for the tool. The TCO should
consider price, time and effort required
to work and implement the tool in your
project or organization.
Compare the following:
® Price of tool
e Time to get started and reach RTM test

(readable, trustworthy, maintainable)
® Time to write tests
e Time to fix test because of production

change (change resistance)
Typemock have recently released Isolator
2010, a unit testing tool that helps
abstract dependencies from the tested
code, supports Visual Studio 2010 and
.Net 4.0 and is the only solution for testing
SharePoint applications, as well as Test
Lint Pro, the first solution to enable entire
development teams to collectively
implement best practice in unit test
writing. These solutions ensure faster,
quality code development and are integral
parts of Typemock's unit testing solutions
catalogue.



