

A Forrester Consulting Thought Leadership Paper Commissioned By Coverity

Development Testing: A New Era In Software Quality
Demands For Speed And Innovation Are Driving Quality Earlier Into The Software Development Life
Cycle

November 2011

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 1

Table Of Contents

Executive Summary ... 2

Speed And Innovation Are Driving Quality Earlier In The Life Cycle ... 3

Finding Defects Later Costs Money And Affects Speed ... 5

The Relationship Between Development And Testing Is Changing ... 7

Future State Requires Collaborative, Automated, Integrated Test Practices ... 10

Key Recommendations ... 15

Appendix A: Methodology .. 16

Appendix B: Demographics ... 16

Appendix C: Endnotes .. 18

© 2011, Forrester Research, Inc. All rights reserved. Unauthorized reproduction is strictly prohibited. Information is based on best available resources.
Opinions reflect judgment at the time and are subject to change. Forrester®, Technographics®, Forrester Wave, RoleView, TechRadar, and Total
Economic Impact are trademarks of Forrester Research, Inc. All other trademarks are the property of their respective companies. For additional
information, go to www.forrester.com. [1-J11RTL]

About Forrester Consulting
Forrester Consulting provides independent and objective research-based consulting to help leaders succeed in their organizations. Ranging in
scope from a short strategy session to custom projects, Forrester’s Consulting services connect you directly with research analysts who apply
expert insight to your specific business challenges. For more information, visit www.forrester.com/consulting.

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 2

Executive Summary

Software is increasingly becoming a key part of any business’ ability to compete. Speed and innovation have risen to the
top of the to-do list for software delivery teams. In parallel, software delivery teams are looking to deliver their
applications on a growing list of platforms and channels. The result is the need to build software faster, demonstrating
more innovation in an environment of increased complexity. Those objectives translate into an ever-changing software
development team that is applying more Agile approaches, using different technologies, and executing different
practices. But what of quality? In August 2011, Coverity commisioned Forrester Consulting to survey firms in North
America and Europe to answer the question, “What are the implications of expanding testing in development, and what
does it mean to development quality?”. The survey targeted IT leaders from more than 200 companies.

Key Findings
Forrester’s study yielded six key findings:

 Development testing has dramatically increased in importance. Eighty-seven percent of people surveyed
believe that development testing is more important than it was two years ago, and 97% have plans to increase
their investment in development testing. Respondents cited improved product quality, improved product
security, and cost reduction as the top three items driving their development testing initiatives.

 The longer you leave defects, the more they cost. The survey reported that 73% of respondents believe that
increased cost is the most serious consequence of finding defects late in the software development life cycle.
Seventy percent of respondents believe that development testing is more important today because they have an
increased awareness of the time savings of finding and fixing defects during development. Forty-one percent of
respondents cited the ability to resolve defects more quickly as the primary benefit of development testing,
followed by the ability to better meet time-to-market schedule.

 Developers are under pressure to deliver innovation quickly to market but must maintain quality. Sixty-four
percent of managers responded that developers are under more pressure today to deliver innovation. Fifty-eight
percent cited increased pressure to deliver faster to the market. Yet developers cannot sacrifice quality for the sake
of speed.

 The most important quality measures are subjective in nature. Seventy-seven percent of respondents believe
the number of defects introduced compared with peers is a key measure in the success of a development project.
This reinforces the relative nature of quality that without firm comparisons, development teams continue to look
to their peers to provide context to their results.

 Testing is a critical component of the developer’s role and is expanding beyond its traditional definition.
Seventy-nine percent of managers believe testing is a key part of the developer’s role. And the nature of testing
methods deployed during development is expanding beyond unit testing as the sole safety net. The survey
indicates that security (69%), performance (67%), and functional (50%) testing are being undertaken more often
than unit testing (48%).

 Collaboration between development and other groups is a problem. Sixty-three percent of managers reported
that a lack of collaboration between QA and development has increased the risk in a project, and 46% of

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 3

respondents say it has resulted in increased project costs. A lack of visibility and conflicting priorities were cited
as the primary barriers to collaboration.

 Delivery capability is not improved by architecture. It comes in a poor fourth after process, skills, and tools.
This highlights the weakness of the discipline and the disconnect by development teams between good
architectures and improved delivery capability. Technical debt, a key measure of software maintainability, was
also not measured by 31% of respondents as a part of project success.

Speed And Innovation Are Driving Quality Earlier In The Life Cycle

The pace of business innovation continues to increase. Forrester has observed that businesses that traditionally took
years to bring new products and services to market now strive for those changes to be introduced in months and
perhaps days. Innovation is also increasingly the responsibility of the software delivery group, with the business looking
to technology to create new products, connect to the customer in different ways, and exploit new information and sales
models (see Figure 1). For many software delivery teams, this has resulted in a fundamental shift in their working
practices.

In a recent survey, Forrester found that more than 38% of developers are using an Agile method, with increased velocity
being cited as the primary reason for such a change.1 Agile encourages cross-functional teams to deliver software while
focused on a common goal. In the same way that Agile methods drive development and the business to have a closer
working relationship, they also encourage the practice of testing to be both started earlier and more integrated. But
starting testing earlier is not just the province of Agile development teams; even delivery organizations that are not
using Agile, when challenged with increased velocity, have a strong focus on quality in development (see Figure 2). The
importance of development quality continues to grow. Eighty-seven percent of organizations surveyed describe an
increase of importance for development testing, with 31% describing that increase as significant. Motivations include
the following:

 Finding bugs early saves you time and money later. It may come as no surprise that the majority of
organizations surveyed describe finding bugs earlier as the reason for development testing, with 70% describing
their motivation as time and cost (see Figure 3). The idea that finding bugs earlier has a direct impact on cost and
schedule is nothing new, with Capers Jones describing the impact on software development productivity in his
studies during the ’90s, but without the motivations of increased innovation and speed organizations might not
act on it.

 Finding performance and security bugs late can be showstoppers. Security and performance bugs are perhaps
the hardest bugs to fix, and they also have the most impact on the overall architecture of the software. By focusing
on discovering these bugs early, development teams reduce their impact.

 Quality, quality, and more quality. Modern users of software have considerably less willingness to put up with
bugs and problems. This is even more important when end customers are using the software. Customer
experience is increasingly including not only physical interactions and the product but also electronic channels. It
is therefore crucial that quality is baked into the application from day 1.

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 4

Figure 1
Innovation And Speed Are The Biggest Pressures For Development

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Figure 2
Agile And Traditional Development Approaches Value Development Quality

Base: 258 total IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

“Are development teams under more pressure to deliver the following today compared with two years ago?”

18%

26%

26%

35%

30%

32%

24%

24%

24%

24%

27%

27%

19%

15%

14%

6%

9%

4%

10%

8%

More complex solutions

Faster time-to-market

Higher-quality code

More innovation

Significantly more pressure today More pressure today About the same today Less today Not sure

9%

14%

26%

20%

30%

10%

15%

27%

28%

20%

Not sure

Less today

About the same today

More pressure today

Significantly more pressure today

Agile —
base: 141

Not using
Agile —
base: 117

“Are development teams under more pressure to deliver the following today compared with two years ago?”

“Higher quality code”

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 5

Figure 3
Increased Savings Of Time And Money Drive Development Quality

Base: 225 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Finding Defects Later Costs Money And Affects Speed

It comes as no surprise to anyone involved in software that the longer a defect is left undiscovered and resolved, the
more money, effort, and time it takes to fix. Defects, unlike fine wine, do not age well. But with increased pressures on
the development team to deliver more innovative software faster, it often seems much more prudent to leave discovery
of defects until a fixed point, allocating focused time on their discovery and resolution. This process may even be given
a cool name such as “hardening sprint” or “quality smackdown.” Barry Boehm and Philip Papaccio found that an error
created early in the life cycle and not fixed costs you 50 to 200 times more to fix later in the life cycle than if fixed in the
stage it was created.2 What is more telling is not the cost but the architectural impact of late discovery. As time pressures
become more pressing later in the project, defect fixes tend to be scrappier. Architectural rules, so easily followed in the
earlier stages of the life cycle, suddenly look like an overhead when everyone is watching the clock.

Innovation Is Not Just About Adding More Stuff
When many organizations think about innovation, they focus on adding new capabilities and functions. But innovation
is also about building software that is easy to change and flexible to use (see Figure 4). Increasing software flexibility is a
key characteristic of the value of addressing technical debt, a metaphor for describing the value of improving not only
what the software is but also how it does it. Technical debt is the cost incurred to change the software, which, if left, will
only increase. Increasing architectural flexibility is a key characteristic of technical debt, with debt being the metaphor
to describe the increased cost, time, and effort to make changes to the software. Increased technical debt:

“Why is testing code during development more important today?”

1%

5%

10%

25%

40%

43%

70%

Because the management told us it was more important

Didn't really know about it before and now do

Conforming to certain mandates or compliance initiatives

Increased awareness that not all code defects can be found in traditional
functional or performance testing processes performed by a dedicated QA

team

Increased awareness of the cost savings of f inding and f ixing defects during
development

Increased pressure on the development group to f ind and f ix defects

Increase awareness of the time savings of f inding and f ixing defects early in
the life cycle

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 6

 Slows down time-to-market. The more complex the solution, the harder it is to change but also to test. For
example, many organizations’ legacy systems have evolved to a point where the only way to know what your
change has impacted is to test the software and see what breaks. This increased test burden makes the process of
delivery harder and harder.

 Makes it harder to swap out resources. The more complex the solution, the harder it is to describe. That leads to
organizations having to rely on certain key workers who have a strong knowledge of a particular system and
makes changing staff or managing transitions increasingly hard.

 Reduces the overall value of the software. Software is like any other asset within an organization and,
unfortunately, may depreciate if not maintained. As the cost of making a change increases, the return on that
change reduces. At a certain point, the cost will outweigh the value and make it hard to justify change. Innovative
ideas will stall because the cost of change is so hard, thus making the initial investment a significant barrier.

Figure 4
Making Factors Affect Improving Delivery

Base: 258 IT decision-makers in organizations that develop software

(Only top factors shown)

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Security, Complexity, And Functional Quality Affect Long-Term Viability
The project culture that exists in many software delivery organizations encourages many teams to forget that software
has a long shelf life. Software older than three years is the norm, with more than 28% working on software that is older
than five years (see Figure 5). Like many Hollywood actresses, software only ages well when treated with great care. But
considering how long software lives, for many organizations, many of the things that are important to manage age are
ignored or underinvested in, such as:

 Documentation. If the software has to be maintained then it is crucial that documentation describing the form
and function of that software is maintained. For many development teams, documentation is considered as an

“What are the factors currently preventing your development teams from delivering the following?
(Select all that apply)”

To deliver: Top factor preventing delivery %

Faster time-to-market Lack of connection with the business 44%

Development teams are siloed. 40%

Not enough time to test 38%

More innovation Existing technical debt 52%

More complex solutions Lack of visibility and control over projects 40%

Higher-quality code/more innovation
Lack of collaboration between
development and QA

39%

Higher-quality code
Legacy software makes developer testing
really hard.

39%

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 7

afterthought, being left until the last minute or considered an ancillary task undertaken by more junior members
of the team.

 Consistent staff. Without strong documentation, it is important to keep teams together, allowing tacit
knowledge to support the maintenance of the software. However, the majority of software delivery organizations
follow a project-based approach, moving resources as necessary to accommodate the project. This results in a
transient culture for software teams with lack of ownership for the software assets they work on.

 The architecture. Like any good city, it is easier to navigate the software when it follows a good plan. However,
the majority of organizations do not measure the software’s adherence to the plan in a formal way, relying on
code reviews and the role of the architect to ensure compliance. These tests are subjective and allow human
factors to creep into the evaluation.

Figure 5
Old And Large Is The Norm For Software

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

The Relationship Between Development And Testing Is Changing

With increased speed and innovation, the relationship between testing and development is changing from one of a
service to a partnership. The lines between testing and development have blurred. Developers are doing more testing,
and testers are being involved much earlier in the life cycle. Testing and quality are now considered a key part of the
developer’s role (see Figure 6). The extension of the role allows developers to extend the reach of testing, including
additional tests focused on performance, security, and service. It also enables quality professionals to utilize the skills of
developers in building more comprehensive automation suites.

“On average, how large are the
applications that you are building?”

“On average, how old are the applications you
are working with?”

7%

38%

28%

21%

7%

Less than a year old

More than a year but less
than three years old

More than three years but
less than five years old

More than five years but
less than eight years old

More than eight years old

4%

15%

29%

36%

9%

7%

Less than 500,000 lines of code

More than 501,000 but less than
1 million lines of code

More than 1.01 million but less
than 5 million lines of code

More than 5.01 million but less
than 10 million lines of code

More than 10 million but less
than 20 million lines of code

More than 20 million lines of
code

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 8

Figure 6
Test Is A Crucial Role For Development

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Developers Are Measured For Today, Not Tomorrow
Though software quality is a key responsibility of the developer, there is a tendency to focus on the immediate rather
than the long-term quality. Business-driven quality measures are often ignored in favor of comparative measures with
other development teams and a strong focus on their own related defects (see Figure 7). Functional, performance, and
security tests are the emphasis of development testing (see Figure 8). Longer-term views of the software in the areas of
usability and flexibility are ignored. Software is rarely short-term, with many software systems having longer tenure
than the people who work on them. Installing a long-term view to developer quality ensures that:

 Complexity does not get out of hand. Without clear guidelines on complexity, it is very easy for development
teams to increase the complexity of the system without any regard to the impact of that complexity. Measures
such as cyclomatic complexity and approaches that focus on high cohesion and low coupling help development
teams understand the impact of the changes they are making.

 Defect numbers trend down. Absolute measures on defects provide little reference for development teams. It is
therefore crucial to see relative improvement in quality. Trending information is a great mechanism to compare a
team’s overall quality today with where it was, with a view to continually improve quality.

 Customer insight is not ignored. Without clear insight into how effectively customers use the product, it is
difficult for developers to have a clear idea of the overall quality of the product. In the absence of real customer
data, measures provided by operations and support can provide a proxy for real usage information.

“Is testing considered a key part of the developer’s role?”

1%

6%

20%

73%

Unsure

No

Sometimes

Yes

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 9

Figure 7
Development Quality Focuses On Comparison Of Peers

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Figure 8
Security And Performance Testing

Base: 240 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Developers Are Not The Only People Doing Testing During Development
The term “development testing” often leads us to believe that the focus is developers doing testing when in fact, the
word “development” is meant to signify the stage of the life cycle or, in the case of Agile, the work that happens within a
sprint. Development testing, like many activities during a project, is a team sport, with many team members working
on it. Developers are a key resource, but their skills are augmented with professional QA practitioners, business
analysts, and software architects (see Figure 9). The whole team shares the objective of increasing the quality of the
software, with different practitioners doing tasks that make the most sense to them. For example, developers might
spend time creating performance and security scripts, while QA professionals build out the functional testing
environment or create test data. This partnership model allows for great flexibility and ensures that the right resources

“Are the following factors incorporated in measuring the success of your development project?”

64%

66%

69%

71%

72%

77%

31%

30%

28%

27%

26%

19%

4%

4%

3%

2%

2%

4%

Reduction of technical debt

Reduction in number of defects from previous release

Number of escalations due to software defects

Number of total defects fixed regardless of defect owner

Number of own defects fixed

Number of defects introduced compared with peers

Yes No Don't know

“What sort of testing are developers doing?”

11%

48%

50%

50%

67%

69%

Peer reviews

Unit testing

Integration testing

Functional testing

Performance testing

Security testing

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 10

are involved. But it also encourages a real team-based approach with shared goals and collaborative working
environments.

Figure 9
Testing Happens During Development In Many Different Forms

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Future State Requires Collaborative, Automated, Integrated Test Practices

It is clear that leaving testing to the end of the life cycle and disconnecting this from the practice of software
development only has a negative impact on the project. But to optimize the software manufacturing process requires a
change to technology, roles, and organizational models. It also requires delivery teams to focus on measures and
metrics that encourage collaboration and aligned software delivery efforts to business value. It is far too easy for
development organizations to invest in development testing without that investment being aligned to value. Code
coverage is an example of a development testing practice that can generate large amounts of work with diminishing
returns. By setting test coverage levels that are nearly complete, development teams will spend a great deal of time
building tests to cover each bit of code — code that might be simple, infrequently used, or tested in some other way. It is
therefore crucial that development testing is considered in a holistic way, focusing on practices that provide a balance
between value and effort.

Automate The Simple Tasks To Ensure Consistency And Visibility
The delivery team undertakes many algorithmic tasks — in particular, in the areas of build, configure, and deploy. By
focusing on the routine tasks, automating and providing dashboards, delivery teams can increase the consistency of
these tasks while ensuring that the team has visibility of what is happening. This principle holds even truer when the
team is distributed. Distribution increases the lack of transparency in the project and reduces the overall amount of
trust. By automating tasks, distributed teams will get consistent outcomes across locations. In the area of development
quality, automation should focus on:

 Continuous integration (CI). CI is a growing trend within the broad development community, and 65% of the
people surveyed are using CI on their development work. Though 65% sounds like a great number, it means that

“Are you testing code for software defects during development? (Select all that apply)”

2%

35%

55%

64%

No, developers do not test any code during development

Yes, QA is part of the team and does all the testing

Yes, the developers test their own code/components
during development

Yes, we have specific role/function dedicated to testing
code during development (a centralized team)

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 11

more than 30% are not (see Figure 10). By increasing the frequency of integration that CI provides, delivery teams
will improve their visibility of the overall quality of the software. Integration issues build problems, and code
conflicts will be front and center, allowing these problems to be resolved.

 Integrating testing into CI. Once the delivery team has built the foundation of frequent build and integration,
the next logical step is to integrate development testing into that process. Automatically executing unit tests as
part of the regular process allows teams to test not only their code but also their code in the context of other
people’s code. Code that worked so well in the developer’s sandbox may suddenly stop working or behave in
strange ways when connected to a much more complex set of changes.

 Guarding entry to CI with instrumentation. Code coverage and static code analysis provide great ways of
ensuring that the code that enters the CI process is of an appropriate quality. This ensures that the team does not
spend wasted time dealing with immature code or incomplete tests. By using instrumentation to gate the process
of CI, delivery teams increase the value of the CI process, removing many of the time-consuming simple issues
that often plague its use.

Figure 10
Continuous Integration Is A Key Development Quality Practice

Base: 258 IT decision-makers in organizations that develop software

*Base: 167 IT decision-makers in organizations that use CI

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Collaboration Between QA, Operations, And Development Is Key
Software quality, by its very nature, is an abstract concept determined not by machines but by its stakeholders.
Developers, managers, business analysts, product owners, and quality professionals all have strong ideas of what quality
means, and they express those quality definitions in their test plans and acceptance criteria. In development, those test
plans form the basis of development testing activities such as unit testing and integration/architecture testing. QA
builds separate sets of test plans, which describe quality from its perspective (see Figure 11). Operations, which may
have its own preproduction tests, creates its own definition. Often, each of these groups operates as silos. By increasing
the collaboration between the groups and connecting QA and operations to development quality, delivery teams will

“Do you use continuous integration?”

Yes,
65%

No, 31%

Don't
know,

5%

“Is developer testing incorporated into your CI
process?”*

Yes, 91%

No, 8%

Don't know,
1%

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 12

fundamentally reduce the risk to the project (see Figure 12). Improving collaboration between QA, operations, and
development requires the following:

 Use consistent deployment models within CI. Forrester has observed within many delivery organizations that
deploying to integration test uses one deployment protocol, deploying to preproduction another, with the final
production deployment using a completely different approach. This inconsistency leads to a large number of
errors, with some organizations describing about 30% of production tickets being related to infrastructure
inconsistencies. By using consistent processes and tools, it is possible to increase quality and reduce time wasted
trying to resolve issues that are only issues because of inconsistent deployment models.

 Put in place dashboards that everyone can view. Nobody likes surprises, and often, the relationship between
these groups is one of the surprises. Development surprises QA with incomplete software. QA surprises
operations with what is in the release and how long it has to deploy it. Operations surprises development with
production tickets and scheduling conflicts. By having clear dashboards that are shared by both parties, it is
possible to reduce those surprises and encourage collaboration between those organizations.

 Access to development quality results after software is live. Understanding how the software runs in
production and then sharing that with QA and development teams really help provide context for any change
decisions going forward. It also allows QA to prioritize tests based on actual usage patterns.

Figure 11
Conflicting Priorities Are Top Inhibitors Of Collaboration

Base: IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

“If there is a lack of collaboration between QA and development, what were the biggest inhibitors
to effective collaboration between QA and development?”

24%

26%

35%

36%

37%

33%

37%

29%

36%

31%

43%

37%

35%

28%

33%

No formal process (base: 42)

Different tools being used (base: 158)

QA lacks visibility into the changes made during
development (base: 178)

Developers don't prioritize potential defects found by QA
(base: 200)

Conflicting priorities for QA and development teams
(base: 196)

First Second Third

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 13

Figure 12
Increasing Collaboration With Operations Will Reduce Development Risk

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Technical Debt Is Measured
Quality is a long-term rather than a short-term attribute of the software. It is far too easy to focus delivery teams on
short-term quality measures such as functionality or performance. Long-term value also needs to be measured,
reflected on, and if appropriate, acted upon. “Technical debt” is a term used to describe this long-term software quality.
By putting in place practices that measure that debt with a process for dealing with its results, software delivery teams
will actively manage the long-term quality of the software over time. To implement a technical debt practice within
development quality, software professionals should:

 Educate themselves on what technical debt is and why it is important. Without a clear understanding of the
impact of technical debt, it is very hard for practitioners to invest time and effort into its resolution. As time
pressures mount, doing work that does not directly improve delivery for today is hard to justify. By having a good
understanding of the long-term impact of that debt, it equips software delivery pros with tools to balance the
short-term needs with the long-term objectives. For the majority of people, no one wants to do a bad job, but the
trick is knowing what “bad” is, and technical debt adds to that understanding.

 Measure debt and report on it. For many organizations, technical debt is an abstract concept associated with
style, comments, and architectural models. These concepts, though valid, are often hard to make tangible. Not
only does this make it hard to execute on reducing technical debt, but making the tradeoffs between change today
and change in the future is also really hard to make. By having a tool that clearly provides a set of metrics
associated with debt, software delivery pros can get a clear understanding of the state of their debt and review
how it is changing over time (see Figure 13).

 Balance working on debt items versus new functionality. The key to success is not to build perfect code but
instead to make intelligent decisions about the level of perfection versus getting the software out the door. On a
project, these decisions are made at many levels, ranging from at an application or product level to individual
lines of code within one component or service. Peer review helps provide a mechanism to review the majority of
the decisions, allowing peers to discuss the quality of the code and its impact. By using objective metrics within

“Has a lack of collaboration between development and operations ever resulted in any of the following:”

9%

19%

32%

46%

56%

We do not have this problem

Impact to customer satisfaction

Delays in time-to-market

Increased project cost

Increased risk in a project

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 14

that peer review, software delivery pros can base those discussions on some level of fact rather than just stylistic
considerations.

Figure 13
Measuring Technical Debt

Base: 258 IT decision-makers in organizations that develop software

*Base: 143 IT decision-makers in organizations that measure technical debt

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

“Do you measure technical debt?”

Yes, 55%
No, 41%

Don't know
what

technical
debt is, 4%

“How is technical debt measured?”*

57%

65%

44%

28%

8%

Code integrity
tools

Code review

Comments in code

Sampling of code

Architectural
review

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 15

KEY RECOMMENDATIONS

It is clear that software delivery is becoming more important and more complex. Software that traditionally was hidden
from customers is now front and center to their lives. Software is not just running businesses, but for many, it is running the
relationship between the customer and that business. It is the place for innovation and value. But that requires software
delivery organizations to fundamentally change their way of thinking about the processes, skills, and tools being employed
to deliver that software. By moving quality earlier in the life cycle, software delivery pros can build software of a higher
quality but more importantly, deliver innovative software faster. To introduce a more robust developer quality practice:

 Educate developers on testing and quality. Testing and quality are a key responsibility of developers, but for
many, their testing skills were picked up while doing other things. In fact, for many, testing is considered to be a
sign of weakness or a discipline practiced by developers who cannot develop. These ideas need to dispelled, with
developers not only being educated on great practices for development quality but also understanding why it will
help their career and professional development.

 Automate with tools, and connect them into your build and release process. As delivery velocity and
complexity increases, it is very difficult to measure development quality without using tools. Those tools provide
objective measures that can help drive behavior within the delivery team. By using this information, it is possible to
better enable the CI process, allowing CI to only select code that has achieved a certain level of quality. This reduces
the amount of churn in integration testing, reducing the number of false defects and wasted time.

 Integrate the life cycle for information sharing. Quality is not an abstract concept but should be something very
tangible to both the developer and the delivery team. By treating development quality as a first-class citizen within
the ALM tools and sharing it in the same way that code and requirements are being shared, software delivery teams
get a better understanding of the applications and the state they are in.

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 16

Appendix A: Methodology

In this study, Forrester conducted an online survey of 258 IT decision-makers in the US, Canada, the UK, Germany,
and France to evaluate trends in development testing. Survey participants included decision-makers in organizations
that develop code in-house or commercially. Questions provided to the participants asked about testing practices,
development methods being used, technical debt, and areas that developers are measured against. Respondents were
offered a small incentive as a “thank you” for time spent on the survey. The study began in August 2011 and was
completed in the same month.

Appendix B: Demographics

Figure A
Country And Company Size Profile

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

“In which country are you located?” “Using your best estimate, how many employees work
for your firm/organization worldwide?”

US, 53%

Canada,
11%

UK, 12%

France,
13%

Germany,
12% 500 to 999

employees
(medium
to large),

32%

1,000 to
4,999

employees
(large),
29%

5,000 to
19,999

employees
(very
large),
20%

20,000 or
more

employees
(Global
2000),
19%

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 17

Figure B
Industry Profile

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Figure C
Role Profile

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

For which industry are you currently developing software (Please include your own industry if you do in-house development)?

1%

3%

4%

4%

5%

6%

6%

7%

7%

8%

15%

17%

17%

Automotive

Mobile

Communications, Media and Entertainment

Other (please specify)

Energy

Transportation & hospitality

Government

Healthcare/life sciences

Retail

Consumer electronics

Computer hardware (e.g., storage box)

Financial Services

Manufacturing

“Which of the following most closely reflects your job function?”

5%

7%

9%

9%

14%

17%

17%

24%

Security testing or security auditing

Software architect

Software quality assurance (including testing)

Product manager

Business decision-maker and executives (e.g., CTO, CMO, CFO,
COO, CEO)

Software developer

Program manager

Development manager

Forrester Consulting

Development Testing: A New Era In Software Quality

Page 18

Figure D
Types Of Software Being Produced

Base: 258 IT decision-makers in organizations that develop software

Source: A commissioned study conducted by Forrester Consulting on behalf of Coverity, September 2011

Appendix C: Endnotes

1 Read about adoption and the implication to Agile in “It’s Time To Take Agile To The Next Level,” Forrester Research,
Inc., March 25, 2011.

2 A great book on the whole economics of software engineering that describes the cost model is Software Engineering
Economics by Barry W. Boehm.

What kind of software is your firm currently producing? (Select all that apply)

48%

51%

53%

62%

63%

Cloud based applications

B2B Enterprise software

Embedded software

Consumer software

Web based applications

